Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes.

نویسندگان

  • E U Frevert
  • B B Kahn
چکیده

Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K (iSH2) and the catalytic p110 alpha subunit (p110). Coexpression resulted in PI3K activity that exceeded insulin-stimulated activity by two- to fivefold in cytosol, total membranes, and the low density microsome (LDM) fraction, the site of greatest insulin stimulation. While insulin increased glucose transport 15-fold, coexpression of iSH2-p110 increased transport (5.2-) +/- 0.7-fold with a parallel increase in GLUT4 translocation to the plasma membrane. Constitutive activation of PI3K had no effect on maximally insulin-stimulated glucose transport. Neither basal nor insulin-stimulated activity of glycogen synthase or mitogen-activated protein kinase was altered by iSH2-p110 coexpression. DNA synthesis was increased twofold by insulin in control 3T3-L1 adipocytes transduced with beta-galactosidase-encoding recombinant adenovirus, while iSH2-p110 coexpression increased DNA synthesis fivefold. These data indicate that (i) increased PI3K activity is sufficient to activate some but not all metabolic responses to insulin, (ii) activation of PI3K to levels exceeding the effect of insulin in adipocyte LDM results in only a partial stimulation of glucose transport, and (iii) increased PI3K activity in the absence of growth factor or oncoprotein stimulation is a potent stimulus of DNA synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin activates glycogen synthase by a novel PI 3-kinase/p70s6k dependent pathway in 3T3-L1 adipocytes.

Insulin causes the activation of a tyrosine kinase activity in the intracellular domain of its receptor, the major substrate of this kinase being the multifunctional docking protein E l . Phosphorylation of specific tyrosine residues on IRSl allows this protein to interact with and activate a number of downstream signalling molecules including phosphoinositide 3-kinase (PI 3-kinase), SHPTP2 and...

متن کامل

Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis.

Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinositol 3-kinase, including glucose transport, glycogen synthesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Recently, it has been shown that protein kinase B (PKB/c-Akt/Rac) lies immediatel...

متن کامل

Involvement of PI 3-kinase in stimulation of glucose transport and recruitment of transferrin receptors in 3T3-L1 adipocytes.

PI 3-kinase is acutely activated by insulin and it is apparent that PI 3-kinase activity is required for insulin stimulation of a range of diverse responses. These include stimulation of glucose transport [l-41, activation of ribosomal protein S6-kinase [3,5], induction of membrane ruffling [6], inhibition of lipolysis [71, activation of the MAP kinase cascade [8] and activation of glycogen syn...

متن کامل

Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing.

Glucose homeostasis is controlled by insulin in part through the translocation of intracellular glucose transporter 4 to the plasma membrane in muscle and fat cells. Akt/protein kinase B downstream of phosphatidylinositol 3-kinase has been implicated in this insulin-signaling pathway, but results with a variety of reagents including Akt1-/- and Akt2-/- mice have been equivocal. Here we report t...

متن کامل

High Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells

BACKGROUND High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 1997